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CHAPTER FOURTEEN

FIXED EFFECTS AND
DIFFERENCE-IN-DIFFERENCES

Erin C. Strumpf, Sam Harper, and Jay S. Kaufman

ould increasing mothers’ education reduce infant mortality? Does
ngving new parents additional time off from work affect their newborns’
health? Do tobacco taxes reduce or exacerbate social inequalities in smoking?
Questions about the impact of social and economic exposures on health are a
chief concern of social epidemiology. Our aim in this chapter is to provide an
introduction to analytic techniques and study designs—namely fixed effects
and difference-in-differences—that are useful for answering questions about
the causal impact of social exposures on health.

Understanding the role that social factors play in population health has
become an important aim for public health scientists in recent decades, and
most governments have now made reducing social inequalities an important
consideration of public health policy (Wanless 2007; WHO Commission on
Social Determinants of Health 2008; Xavier et al. 2009; Koh 2010). Population
health interventions are expensive, and if we decide to spend our resources on
interventions to improve population health and reduce health inequalities, we
want that money to be spent on effective solutions. As other chapters in this vol-
ume make clear, strong associations exist between health and socioeconomic,
ethnic, geographic, and other social factors over the life course. Much of this
work is strictly descriptive, and there are good reasons to continue measuring
and monitoring health inequalities. However, as the sheer volume of studies
documenting the existence of social inequalities in health has increased, the
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question of how to design policies to reduce inequalities has become more
pressing, and the demand for reliable and valid evidence on how to do so has
increased (Petticrew et al. 2004; Petticrew 2007; O’Campo 2012).

Observational studies in epidemiology have come under substantial
scrutiny in recent years, as scientists have sought explanations for discrepan-
cies between randomized and non-randomized studies of similar exposure
contrasts (Davey Smith and Ebrahim 2001; Lawlor et al. 2004; Ioannidis 2005;
Hernan et al. 2008). Because randomized interventions are often impractical
or unethical for social exposures, social epidemiology must instead rely
mostly on observational data, where unmeasured confounding is a constant
threat. This is particularly true for social exposures, since it is often easy
to hypothesize non-causal explanations for observed differences in health
between social groups (Cutler et al. 2011). Translating observed relationships
between social exposures and health outcomes into effective policies and
interventions requires identifying which correlations reflect underlying causal
effects (Harper and Strumpf 2012).

Causal effects necessarily involve a comparison of individuals under (at
least) two different exposure/treatment regimes, but we can only observe one
(factual) treatment and must therefore try and obtain a suitable counterfactual
substitute for what would have happened to individuals under the alternative
treatment (Maldonado and Greenland 2002). Randomization greatly helps to
solve this problem since in expectation the treated and untreated groups are
exchangeable, but if we cannot randomize then how should we make compar-
isons between different levels of exposure? Much of the literature in social
epidemiology has focused on comparisons across individuals with different
levels of, for example, income or education. Knowing that there are many rea-
sons why individuals with high versus low education differ apart from their
health, researchers often use regression to adjust for these measured differ-
ences between groups. The validity of this strategy for making causal inferences
rests on the strong assumption that we have measured all of the relevant con-
founders (in addition to the usual assumptions about absence of measurement
error and selection bias, and correct model specification).

To make the assumption of no residual confounding more credible, we
could use other comparisons that may be closer to our desired counterfactual.
One potential strategy could be to use changes in exposure status within
individuals as a way to control for hard-to-measure individual-level factors that
do not vary over time (e.g., innate ability, stable personality characteristics)
that are likely to be correlated with both exposure and outcome. This is the
logic behind the fixed effects models we describe below: that we improve
causal inference by comparing within individuals over time rather than across
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individuals. However, when changes in exposure status are under the control
of the individuals we are studying, concerns about unobserved factors that are
correlated with changes in exposure status remain.

Another option to generate more credible counterfactual inference is to
utilize changes in exposure status that result from changes in policy or other
decisions made at other levels beyond the individual (e.g., safety legislation,
antipoverty programs, taxation changes). The resulting changes in exposure
status are less likely to be related to unmeasured individual-level factors that
also affect health outcomes. Policy changes generate what are often referred
to as “natural experiments” (Craig et al. 2012) and form the typical setup for
difference-in-differences analyses. In what follows, we describe the rationale
for considering quasi-experimental research designs that help to reduce con-
founding from (some) unobserved factors, introduce basic methods for how
to implement these strategies, highlight important methodological considera-
tions that are common to both, and provide examples and applications from
published studies.

Methods

Intuition

Researchers interested in measuring causal effects might first prefer to inhabit
a universe in which they are able to observe both potential outcomes for each
individual, that is, both Ygprix-1; and Ysgrx—¢ for each individual in the pop-
ulation (where the notation SET[X = x] refers to assigning treatment status).
Barring the possibility of this metaphysical miracle, we appeal to the analogy of
the randomized controlled trial where each individual is randomly assigned to
treatment or control and in expectation both observed and unobserved con-
founders are balanced across the two treatment groups. In other words, on
average these potential confounders are no longer correlated with treatment
assignment and therefore will not bias the estimated treatment effect.
Because it is typically not feasible to learn about the effects of most
social exposures by randomly assigning them (notable exceptions include
housing (Ludwig et al. 2011; Thomson et al. 2013), income (Forget 2011),
early childhood education (Heckman 2006), and health insurance (Brook
et al. 1983; Baicker et al. 2013)), we turn to quasi-experimental methods that
aim to mimic the design of a randomized controlled trial as closely as possible.
More specifically, we seek quasi-experimental study designs in which the only
difference between exposed and unexposed units, or between individuals in
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their exposed and unexposed states, is the exposure itself. If this is indeed the
case, then we find ourselves back in the setting of a randomized controlled
trial where potential confounders are in fact not correlated with exposure and
thus will not bias the treatment effect. In such a study design, we can claim
that the exposure is “as good as random,” that is, independent of unobserved
confounders, either unconditionally or conditional on observed confounders.

To illustrate the strengths of the quasi-experimental approach, suppose
our question of interest is whether a mother’s education affects child health.
We specify a naive model where the health of child 7 at time ¢ is regressed on
the mother’s education:

Y, = ag + ay Exposure;, + ao X; + a3 Z; + @, (1)

where Y}, is the outcome of interest (child’s health), Exposure;, is the mother’s
education level (e.g., primary, secondary, university), X; are observed
time-varying covariates (e.g., age), Z; are observed time-invariant covariates
(e.g., race/ethnicity), and ¢, is the error term. Our naive estimate of ay,
the “effect” of education on health, is almost certainly biased by omitted
variables and/or reverse causality, and this would be equally true in any other
regression model form such as logistic or Poisson. Estimating the causal effect
requires isolating variation in the exposure that is both uncorrelated with
unobserved confounders and not affected by the outcome.

The fundamental challenge is therefore selecting a control group that
meets this criterion: it does not differ from the treatment group in any
systematic way that would bias the estimated treatment effect. The intuition
is the same as controlling for observed confounders in regression analysis:
what is the effect of maternal education on child health holding factors like
maternal age, race, and health status constant? The quality of inference in
this case depends on the credibility of the assumption that, conditional on
these measured confounders, maternal education is as good as randomly
assigned. While this is certainly a step in the right direction relative to a
crude model, it is still unsatisfactory if important potential confounders like
motivation, paternal health status, or social class remain unobserved. Some
of these confounders could be measured with more and better data, but
others are likely to remain poorly measured or unmeasured no matter which
dataset is used. The added value of fixed effects (FE) models is their ability
to control for both observed and stable unobserved confounders, which
lends greater credibility to the assumption necessary to estimate unbiased
causal effects. The difference-in-differences (DD) model goes one step
further to leverage external factors that lead to changes in an individual’s
exposure status.
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Generally speaking, the class of unobserved confounders that FE models
can account for are those characteristics that remain fixed over time within
observed units of analysis, whether individuals or states (we use “states”
throughout this chapter as an example of a jurisdictional unit, which could
easily be countries, provinces, cities, schools, hospitals, etc.). While this will
not capture all potential unobserved confounders, it will surely include a
large set of important factors that we expect to be correlated with both the
exposure and the outcome. For example, women who get more education
may also take fewer risks and invest more for their futures; states or countries
with universal public health insurance may also provide a broader range of
other social programs. Rather than try to measure each of these factors and
include them in the regression model, FE and DD models will control for all
factors—both observed and unobserved—that are constant over time within
individuals or states. The variation in the exposure that we use to estimate the
causal effect must therefore stem only from change in the exposure over time.

DD models can be considered a special case of FE models. Both FE and
DD models include “fixed effects” for individuals or states that control for
time-invariant (“fixed”) confounders. FE models can be estimated using
longitudinal/panel individual-level data (where exposure changes for at
least some individuals) or on aggregate longitudinal/panel state-level data
(where exposure changes for at least some states). A distinction to note is
that in an FE model, the change in exposure may be under the control of the
individual or state, depending on the level of observation in the analysis. In
DD models, changes in exposure are a function of decisions made outside of
the unit of observation (e.g., a policy change happens at the state level, but
the analysis uses individual-level data). For both FE and DD models, the most
important determinant of our confidence that the effect estimate is indeed
causal is whether the exposure change is plausibly unconfounded. This must
be evaluated using both data and knowledge about the specific context in
order to make a credible claim that the analysis estimates a causal effect with
little or no confounding bias.

The potential sources of confounding and the types of fixed effects we
include to address it inform the distinction between these types of models.
In a FE model with individual-level data, individuals make decisions that lead
to the change in their exposure status (they drop out of school after primary
or decide to go to university), so the source of confounding is unobserved
individual-level factors and we include individual-level fixed effects to address
it. In an FE model with state-level data, states make decisions that lead to the
change in their exposure status (they change educational policy), so the source
of confounding is unobserved state-level factors and we include state-level fixed
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effects to address it. In a DD model with data on individuals within states, the
states make decisions that lead to the change in individuals’ exposure status
(similarly to an RCT with imperfect compliance, states change their educa-
tional policy, which should affect the amount of education individuals attain).
The source of potential confounding is unobserved state-level factors, so we
include state-level fixed effects to address it.

Fixed Effects Models

Setup. Fixed effects models are useful when we have panel data, that is,
repeated observations on the same unit over time. While we often think of
individual-level panels with multiple observations for the exact same people
at different points in time, we can also consider aggregate data that contain
repeated observations of geographic units (cities, states, countries), families,
and so on. If we consider using a 10-year panel of individual women to
estimate the impact of their education on their children’s health, the FE
model will estimate this effect based on women who experience a change in
their level of education over those 10 years. Note the key difference between
using individual-level changes in education rather than comparing outcomes
for women with more education with those for women with less education,
as the naive regression model would. The FE model effectively compares
each woman with herself at an earlier time as her control. Moreover, the FE
estimate of maternal education on child’s health controls for all time-constant
observed and unobserved confounders including the mother’s ability, genet-
ics, and, if they remain constant, her parents’ education and social class. In
parallel, an aggregate FE model with state-level data will estimate the effect of
average mothers’ education on average child health outcomes based on states
that experience a change in the average level of mothers’ education over
those 10 years. Each state serves as its own control, and the FE estimate holds
all state-level, time-constant observed, and unobserved confounders constant.
The question of why education changed for some women and not others, or
in some states and not others, and whether this variation is unconfounded,
should be addressed qualitatively and quantitatively as part of the analysis and
interpretation.

Basic FE Regression Framework. The basic unit-level FE regression is as follows:
Yy = v+ pi+ riExposure, +yo Xy + 3T, + o, (2)

where all variables are defined as above and 7, denotes the time period captur-
ing common secular trends; p; is a unit-specific intercept (“fixed effect”), cap-
turing all time-invariant factors that are correlated with the outcome. Because
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p; controls for all time-invariant characteristics of the woman (or state), the
estimated effect of education y; is based on individuals who change their expo-
sure status over time. All individuals contribute to the coefficient estimates on
the other time-varying covariates X;;, but only women whose exposure status
changes contribute to the estimate of y; (Gunasekara et al. 2014). As should
be clear by examining Equations (1) and (2), the error term in Equation (1),
@;;, includes the time-invariant characteristics, p;, therefore biasing the esti-
mate of a; in Equation (1). In contrast, in Equation (2) y; estimates the effect
of an actual changein education in the same individual, thus holding all other
time-invariant individual characteristics constant.

The FE model can be estimated via unconditional or conditional maximum
likelihood. When FE is estimated with conditional logistic regression for a cat-
egorical outcome, individuals with no change in the outcome will be dropped
from the regression, and therefore do not contribute to any of the estimated
coefficients (Gunasekara et al. 2014). The FE estimator with two time periods is
equivalent to a model where changes in the outcome are regressed on changes
in the exposure (“first-differenced estimator”), since in both cases confounders
that are constant over time are controlled for. Further exposition of this point,
as well as a discussion of differencing with more than two time periods, can be
found in Angrist and Pischke (2009) and Wooldridge (2013, Chapter 13).

Similar to a case-crossover design (Maclure and Mittleman 2000), in the
FE model each woman whose exposure status changes serves as her own con-
trol. Therefore the assumption is that her outcome before the change is a
reasonable counterfactual for what her outcome would have been at a later
time in the absence of an increase in educational attainment. Since fixed char-
acteristics that vary across women are controlled for, particularly unobserved
confounders, this assumption may be more plausible than assuming that a
control group of different women provides a valid counterfactual. However,
if other confounders are changing concurrently with the exposure change, a
causal estimate based on only those who change exposure will not be valid. This
is illustrated by the fact that in the simplest model with no X, or 7, the esti-
mate of y; will be the same whether the sample includes only individuals whose
exposure status changes, or both changers and non-changers—the estimate of
71 is informed by only those who change exposure. However, if secular time
trends or other time-varying confounders are important, the effect estimate
will vary depending on the sample. Once y; is conditional on other covariates,
X;, or T,, it will vary depending on whether non-changers are included in the
estimation sample. This desire for a counterfactual based on an external con-
trol group to account for time-varying confounding is part of the motivation
behind the DD models presented below.
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Key Assumptions for FE Models. The FE model is useful for causal inference
because it controls for all fixed characteristics, both observed and unobserved,
that may confound the estimate of the effect of education on health. The
remaining assumption necessary to preclude confounding is therefore that all
time-varying factors that are correlated with both the outcome and the expo-
sure are included in the regression model. Care is warranted in interpreting
the coefficients on time-varying variables (Kaufman 2013). For example, since
educational achievement can only increase, a woman who changes her educa-
tional level must also be older at the higher educational level, and her child
must also be older. As usual, the form of the model must also be correctly spec-
ified, and so flexible specifications (e.g., splines or interactions of time-varying
covariate terms) may enhance credibility of inferences.

Interpretation of Estimates from FE Models. The FE estimate can be considered
a “treatment on the treated” (TOT) or “average treatment effect among the
treated” (ATT), since it is based on those individuals whose exposure status
changed (i.e., we are asking about the counterfactual of what would have
happened to the treated group had they been untreated). To inform policy
decisions, an estimate of the average treatment effect among the untreated
(ATU) is also valuable. Whether the average treatment effect is constant
(ATT = ATU = ATE), and therefore whether the ATT should be generalized
to other groups in the population, is an important question common to all
study designs. In addition, even if a state-level FE model provides an unbiased
estimate of a causal effect at the aggregate level, the interpretation should
not extend to the individual level to avoid committing the ecological fallacy
(Greenland 2001).

Another question of interpretation involves whether the FE estimate is
indeed causal. To address this point we must return to the idea of variation
in the exposure that is “as good as random,” and why certain individuals (or
states) changed their education, neighborhood, or their employment status
while others did not. Was this change plausibly unconfounded? Is the causal
effect of the exposure on the outcome free of time-varying confounding
and reverse causality? We argue that seeking to identify the causal effects
of such exposures using individual-level changes will generally be more
productive than comparing across individuals with different levels of expo-
sure, though there may be tradeoffs between reducing bias and increasing
imprecision (Kaufman 2008). A large number of potential unobserved
confounders—those that are constant over time—are already controlled
for by individual- or state-level fixed effects, which lends more credibility
to this approach. However, if unobserved time-varying confounders remain



Trim Size: 7in x 9.25in *@ Oakes cl4.tex V1-01/11/2017 7:23 P.M. Page 349

Fixed Effects and Difference-in-Differences 349

a concern, caution should be exercised in interpreting the FE estimates as
causal. If a woman did not complete her schooling because of a financial
crisis, her exposure status is a function of this time-varying confounder that
can also affect the child health outcome. In that case, it must be measured
and adjusted for to obtain a causal estimate. In an FE model, we observe how
outcomes change as individuals change their education, move to a better
neighborhood, marry or divorce, or retire or move from part-time to full-time
work. However, the chance that these exposure changes are “as good as
random” in the lives of individuals is slim. For example, if our outcome of
interest is health status, it is probable that health concerns have some impact
on the decision to retire, leading to concerns about reverse causality (Disney
et al. 2006) . Similarly, states’ levels of average educational attainment could be
affected by improvements in health.

For these reasons, changes in exposure that are driven at least in part
by changes in factors external to the individual (policies, laws, public pro-
grams, area-level conditions, etc.) can often be especially useful to estimate
causal effects reliably. Individuals’ changes in educational achievement in the
presence of new mandatory minimum education laws (e.g., Glymour et al.
2008; Mazumder 2008) or subsidies to offset schooling costs are more plau-
sibly unconfounded than changes in the absence of such incentives that could
be due to a wide range of factors. The situation is similar for changes in mar-
ital status in the presence of new laws (such as same-sex marriage laws) and
for changes in employment status as retirement incentives, area-level unem-
ployment rates, or other policy changes. Any FE analysis should incorporate
an examination of the underlying reasons for variation in the exposure and
address whether it generates estimates that can indeed be interpreted as plau-
sibly causal. This interpretation ultimately rests on the convincing story that,
within units, exposure is plausibly as good as random with respect to the out-
come. In this respect, FE models are not a recipe for automatically producing
estimates of causal effects. They provide some clear advantages over naive mod-
els with respect to time-invariant confounders, but if time-varying confounders
or reverse causality are a relevant concern, FE models can still provide biased
estimates of the effect of interest.

FE Extensions and Considerations. Fixed effects analyses are less commonly
used than random effects analyses in much of social epidemiology. Additional
comparison between fixed effects and random effects models is covered
in Chapter 13 by Cerdd and Keyes and Chapter 15 by Hirai and Kaufman
in this volume. In the context of trying to estimate a causal effect, the key
difference is what we assume about the correlation between the exposure and
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the individual-specific intercepts p; in Equation (2). In order for the random
effects model to provide consistent estimates, these must be independent. In
many cases, however, we expect both observed and unobserved individual
characteristics to be correlated with the exposure (which is why we want to
control for them in the first place), rendering such an assumption invalid.
In such cases, FE models are generally preferred to random effects models
(Allison 2009; Kravdal 2011; Harper et al. 2012; Gunasekara et al. 2014). While
the Hausman test can be used to test whether the FE and RE estimates are
statistically different, and therefore whether the RE assumption is likely to
hold, a substantive argument based on the causal model and the context at
hand is also strongly recommended to justify using random effects models
for causal inference. This is because the Hausman test, like all statistical
tests, requires consideration of power and the substantive importance of the
magnitude of difference detected (Wooldridge 2013, Chapter 14; Clark and
Linzer 2015).

In considering whether FE estimation can be a useful tool for social
epidemiologists, it must also be noted that, in its simple form, the model
does not allow one to examine the impacts of exposures that are themselves
time-invariant. These include such factors as race/ethnicity, gender, and birth
cohort, exposures about which there is a large accumulated literature and
continuing interest. Because these factors generally remain constant over time
within individuals, their effects are combined in the unique individual-specific
intercept, which is a composite effect of all fixed factors—both observed and
unobserved—for that individual. While an entire argument exists regarding
whether causal effects of these exposures can actually be measured (Kaufman
and Cooper 1999, 2001; Krieger and Smith 2000), we will limit our remarks
here to noting that their associations cannot be estimated with standard
FE models. Nonetheless, a “hybrid” model can be specified that offers the
advantage of fixed effects inference while also allowing estimation for the
time-invariant covariates (Hirai and Kaufman, Chapter 15 in this volume).
Allison (2005) also discusses including interactions of fixed characteristics
with time-varying characteristics (including time itself) as control variables.

Difference-in-Differences

Setup. Fixed effects models use within-unit changes over time to estimate
the causal effect, with units serving as their own controls. If time-varying
confounding remains a concern, an external control group may help provide
a counterfactual for what would have happened to the units with exposure
changes in the absence of that change. Difference-in-differences models
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estimate the effect of exposure by using changes over time in a treatment
group relative to a control group (Meyer 1995; Angrist and Pischke 2009;
Dimick and Ryan 2014). DD models also differ in that the treatment group’s
exposure status changes over time due to changes at a more aggregate level
(policy or administrative rule change), while the control group experiences
no change in the policy or the rule governing exposure (remains exposed or
unexposed). This design mimics a controlled trial, but one with no random-
ized assignment to the two groups. In a randomized trial, the exchangeability
of the groups is ensured by the randomization, which balances all character-
istics in expectation. In a DD model, on the other hand, exchangeability is
asserted based on examination of time trends before the policy change. It is
also similar to a case—time—control design (Suissa 1995).

Repeated cross-sectional datasets (e.g., the Behavioral Risk Factor Surveil-
lance Surveys, Demographic and Health Surveys) are commonly used by social
epidemiologists. Large, nationally representative surveys, for example, usually
involve stratified random samples and are conducted year after year. Because
the same individuals are not surveyed each year, individual-level FE models are
not feasible and aggregate state-level FE models sacrifice valuable information
at the individual level, particularly for considering effect heterogeneity in sub-
groups (Petticrew et al. 2012). DD models that use individual-level data and
leverage exposure contrasts driven by aggregate-level policy changes can be
particularly useful in this context.

Population-level changes in exposure commonly arise due to policy
changes at some level of governance. As such, individual exposure status
is plausibly unconfounded—neither driven by outcomes nor unobserved
confounders at the individual level. However, confounding at the aggregate
level may still exist since states or countries that enact policies may be
compositionally different from those that do not (e.g., Macinko and Silver
2015). Potential state-level confounders are very commonly differences across
states that do not vary much over time (at least over the time frame of most
analyses), some of which are observed (e.g., socioeconomic composition) and
others not (e.g., social norms). Secular trends that affect both the treatment
and control groups may also confound naive estimates.

The DD design therefore utilizes policy changes rather than time-invariant
policies that differ across jurisdictions. By controlling for all fixed differences
between states and shared changes over time, the DD model focuses on changes
in the exposure of interest that occur in some states but not others and can
thereby estimate the unbiased causal effect of the exposure. Returning to the
previous example, rather than comparing child health between areas with lower
versus higher maternal education or before versus after the policy change in



Trim Size: 7in x 9.25in ‘@ Oakes cl4.tex V1-01/11/2017 7:23 P.M. Page 352

352 Methods in Social Epidemiology

FIGURE 14.1. GRAPHICAL EXAMPLE OF DD ESTIMATE
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affected jurisdictions, the DD model compares changes in child health in areas
that experienced a change in their level of education due to a policy change
(one difference) relative to changes in child health in areas that do not change
their exposure status (a second difference) (see Figure 14.1).

Basic DD Regression Framework. The basic DD regression with two groups,
exposed (j =1) and unexposed (j = 0), and two time periods representing
pre- (¢ = 0) and post-policy change (¢ = 1) is as follows:

Yljt = ﬁo + ﬁlE] + ﬁQPOStt + ﬂgE} X POStt + ﬁ4Xijt + gijt (S)

where Yj; is the outcome for individual 7 in group j at time ¢, £ is an indicator
variable for exposure group j, Post, is an indicator variable for time ¢ being after
the policy change, Xiﬂ j
Ejis equal to one if the observation is in a state that changes its policy, regardless
of the value of 7, and equal to zero in a state that does not change its policy. Post,
is equal to one if the observation occurs after the policy change, regardless of
the value of j. The interaction term therefore equals one only for observations

thatare in the exposed group after the policy change. The estimated coefficient

are individual-level covariates, and Eijy is the error term.

fs reveals any change in outcome Y from the pre-policy time to the post-policy
time that occurs in the exposed group and not in the unexposed group.

To see this point, consider Tables 14.1 and 14.2, representing the poten-
tial outcomes Y p,, in each exposure group and time period, as well as the
regression coefficients that estimate these quantities.



Trim Size: 7in x 9.25in ‘@ Oakes cl4.tex V1-01/11/2017 7:23 P.M. Page 353

Fixed Effects and Difference-in-Differences 353

TABLE 14.1. DIFFERENCE-IN-DIFFERENCES IN POTENTIAL

OUTCOMES
Pre Post
No change in exposure Yoo Yor
Change in exposure Yio Y

TABLE 14.2. DIFFERENCE-IN-DIFFERENCES IN REGRESSION
COEFFICIENTS

Pre Post
No change in exposure Bo Bo + 5,
Change in exposure By + B Bo+ b+ B+ P

The linear “difference-in-differences” estimate is therefore
(Y11 = Yo1) — (Y19 — Yoo) = [(By + By + Po + Ps) — (By + Bo)]
= [(By + B1) — Byl = Bs

While this two-group, two-period case illustrates transparently how this esti-
mator identifies the causal effect, many applications of this method involve
policy changes that affect multiple states using data over multiple time periods.
Equation (3) can be easily expanded to include multiple groups and multiple
periods (Imbens and Wooldridge 2009; Angrist and Pischke 2015). One could
replace E; with multiple indicator variables for different states (some exposed

(4)

and some not), Post, with multiple indicators for different years (some pre-
and some post-), and the E; X Post, product term with a time-varying treatment
indicator such as Treat;, which reflects interactions of the state and year indica-
tor variables (i.e., exposure to the policy varies over time within at least some
units). It is also fairly common that the policy change does not happen at the
same time for all exposed states. In this case, the data can be centered for each
state at “time-zero,” the time of the policy change (or at a later time to accom-
modate any desired etiologic lag). The fact that the pre- and post-periods vary
across years across states can be addressed with controls for calendar time,
in the case that there are secular time trends in the mean outcome. In some
studies, all states are eventually exposed to the policy change. Thus the model
estimates the effect of the policy by comparing exposed states whose policy
changes at a given time to control states who do not experience a change at
that same time (Strumpf 2011).
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Key Assumptions for DD Models. Much as in randomized controlled trials, the
DD model makes the identifying assumption that the control group serves as
an adequate proxy for the counterfactual outcome we would have observed
in the treatment group had they not been treated (Ryan et al. 2015). The
choice of control group is therefore of fundamental importance for the valid-
ity of the DD estimate. The identifying assumption rests on parallel trends in
the outcome in the pre-period, which suggests that the trend in the outcome
among the unexposed in the post-period provides a good counterfactual for
what would have happened to the exposed group in the absence of exposure.
Baseline equivalence of the outcome is not necessary, since any time-invariant
difference between the two groups (including at baseline) is subtracted out
(p; in Equations (3) and (4)). Establishing parallel pre-period trends of course
requires that there be more than one time point observed before the advent
of the exposure change. In the simple two time-period scenario, similarity of
outcome values in the pre-exposure period between the exposed and unex-
posed groups should provide some reassurance. However, DD models using
only two time points will always be somewhat suspect, since in this case the
causal identification rests on the specification of the additive model form, and
cannot be investigated by confirming that the two groups change in parallel
over time before the policy takes effect (Angrist and Pischke 2009; Imbens and
Wooldridge 2009).

In order to interpret the DD estimate as a causal effect, the analyst must
make a convincing qualitative argument that these two groups are indeed
exchangeable, relying on observed data and other available evidence that
can speak to (the lack of) unobserved confounders. The first step is usu-
ally a “Table 1” that compares observed characteristics and outcomes in the
pre-exposure period between exposed and unexposed states. Although they
are unlikely to be as evenly matched as in a randomized controlled trial with
large samples, the two groups should be reasonably comparable in terms of both
substantive and statistical differences. Because the DD estimate controls for all
fixed differences between groups, some differences in the levels of measured
confounders or outcomes that can be expected to persist over time (one group
is consistently older, has higher average income, etc.) need not be a threat to
validity. Such differences may, of course, raise concerns about potential unmea-
sured differences between the groups that are not controlled for with group
fixed effects (i.e., confounding factors that vary over time in some states but
not in others), concerns any analyst should be prepared to address. Stuart and
colleagues (2014) recently suggested a weighted DD regression model, with
weights chosen as inverse propensity scores. This would serve to minimize any
imbalances between the two groups based on measured baseline confounders.
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Given a series of observations before the intervention, the two groups
may then be examined with respect to trends in the outcome. The degree
to which pre-intervention trends in the outcome are parallel in the exposed
and unexposed groups is usually assessed graphically, and sometimes also with
statistical tests in a regression framework (Ionescu-Ittu et al. 2015). This assess-
ment requires attention to statistical precision and whether the magnitude of
any differences is substantively important. The potential for differential com-
positional changes in the two groups should also be considered. This can be
done by examining trends in characteristics that should not change differen-
tially over time, particularly those that might indicate selective migration in
response to the policy change (Levine et al. 1999; Joyce and Kaestner 2001).
These trends can be examined in the pre-exposure period, or over the entire
period if the characteristics in question should not plausibly be affected by the
policy change being studied.

A second assumption required to interpret the DD estimate causally is
that the policy change is (conditionally) exogenous. This means that the pol-
icy change is not driven by pre-policy outcomes (no reverse causality), nor by
any unmeasured time-varying common cause of the policy and the outcome
(no confounding). This assumption can be supported empirically by checking
whether pre-policy outcomes predict the policy change. Thus the key assump-
tion is no unmeasured changes over the study period that affect outcomes in
the two groups differentially. Any correlation between the policy change and
time-invariant factors will be controlled for by the group fixed effects. While
ultimately no assumption regarding unmeasured confounders is empirically
testable, substantive knowledge regarding the reasons for policy changes and
the conditions under which they occurred can help establish the reasonable-
ness of the casual inference (see Cohen and Einav 2003 for an example).

Interpretation of Estimates from DD Models. The DD model estimates an aver-
age causal effect of the treatment on the treated group—a new law making
primary education mandatory, for example. The contrast is between a factually
treated group at some specified time and a stand-in for what would have been
observed in that same group had they, counter to fact, not been treated at that
time. However, remember that the use of the DD approach was also motivated
by finding unconfounded variation in the exposure of interest, education in
our running example. In reference to the effect of education on health, the
DD approach estimates the effect of treatment assignment to the policy, but it
is likely that not all people living in an “exposed” state are subject to or compli-
ant with the policy. This is analogous to the intent-to-treat estimate (ITT) in a
randomized trial with non-compliance. Alternatively, consider that an increase
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in cigarette taxes may reduce smoking intensity on average, but any individual
can opt to maintain or even increase their smoking if they wish. The effect
estimated by DD is therefore not the effect of smoking per se, but rather the
effect at the population level of an increase in cigarette taxes: a very specific
mechanism to discourage smoking. If the degree of compliance—the extent
to which the policy change results in changes in smoking behavior—is known,
the causal effect on the treated group can be recovered from the ITT by scal-
ing the DD estimate by the compliance rate. This is in contrast to a policy
such as banning an environmental contaminant which, if effective, eliminates
exposure for everyone without requiring any active compliance by individuals.
Here, 100% compliance means that the ITT and causal effect on the treated
population are equivalent.

Care must also be taken in generalizing DD estimates. They are “local”
treatment effects in the sense that they refer to subpopulations. The ITT esti-
mates are based on the states that implemented policy changes, and the effect
of treatment on the treated estimates are based on individuals who change
their behavior in response to the policy change (compliers). Whether these
groups are relevant and interesting in and of themselves and/or whether
these estimates can be reasonably applied to other subpopulations or to the
entire target population is an important part of interpreting the results from
studies using the DD approach.

DD Estimation and Extensions.

Model Specification. Recall that the DD strategy relies on interaction between
time (pre/post) and treatment status. As with the use of any interaction term,
the main group and time fixed effects must be included in the regression in
order to correctly interpret the DD estimate as the additional contribution of
being in the exposed group after the policy relative to the unexposed group. If
a higher-order interaction term is used (see the discussion of triple-difference
models below), all main effects and lower-level interaction terms must also be
included so that the model remains hierarchically well specified. Moreover,
interaction terms always have reduced power in statistical tests compared to
main effect terms, meaning that tests on the “significance” of f3 as the causal
estimate may lead to high rates of Type II error (Greenland 1983).

Given the preference for non-linear models in epidemiology, including
logistic, Poisson, Cox, and binomial regressions, the interpretation of the prod-
uct interaction term of a DD model as an estimate of causal effect requires
special care. In the case of a binary outcome, the DD model could be esti-
mated using a linear probability model (OLS), a generalized linear model
with a binomial distribution and an identity or log link, or a logistic regression
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model. The first two models make the implicit assumption that the joint effect
pattern between exposure and time is additive, while the latter two assume
that it is multiplicative. With only two time periods, this modeling choice can
only be based on an outright assumption about the functional form, whereas
with more pre-period data points the appropriate functional form can be esti-
mated from the data (VanderWeele and Knol 2014). The DD literature from
economics and public policy relies almost entirely on the additive scale as the
default null and, indeed, this scale has attractive theoretical and interpreta-
tive properties in epidemiology as well (Kaufman 2010). If analysts prefer to
fit non-linear models because of their statistical advantages, interpretation can
be enhanced by simply manipulating estimated coefficients to form absolute
or marginal probability contrasts (Carpenter 2009; Harper et al. 2014; Muller
and MaclLehose 2014).

State-specific trends are sometimes added to control for potential
confounders that may be changing over time in a linear way (Ryan et al.
2015). For the addition of these state-specific trends to address omitted
variables bias, they must be correlated with the timing of the intervention
and therefore should be added only if there is reason to believe this is
the case (Angrist and Pischke 2015). Moreover, it should be emphasized
that the standard DD model (as in Equation (3)) tests whether there is a
contemporaneous change in the level of ¥ in the post-treatment period.
However, if the true effect affects the trend of Y in the treated group in the
post-period, then including unitspecific trends will generate bias (Meer
and West, 2016). If used, only trends based on the pre-intervention period
should be included in order to control for factors that change differently
across states before the advent of the intervention. Including post-period
state-specific trends can generate bias, since these may be influenced by
any effect of the policy itself. Caution has also been noted about adding
state-specific trends to a model with a single post-policy indicator when the
effect of interest may be dynamic and could change over time (Wolfers 2006;
Angrist and Pischke 2015). In this case, state-specific trends will capture
differential pre-existing trends as well as differences in the evolution of the
outcome between exposed and unexposed states in the post-policy period,
again potentially leading to bias. With multiple time periods, a better alter-
native is to first investigate whether the policy effects are indeed dynamic
(interact the exposed indicator with an indicator for each year) and then
consider whether state-specific trends are needed to address confounding in
the pre-period. In sum, substantial consideration of the specific context at
hand is warranted before adding state-specific trends to address unobserved
confounding.
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It is widely recognized that observations in DD analyses are generally not
independent. Concerns arise about both correlation between individuals in
a state at a point in time and serial correlation for the same state over time
(Bertrand et al. 2004; Donald and Lang 2007). While it has become standard
practice to use the cluster robust variance estimator in DD models to account
for the cross-sectional correlation within states (Williams 2000), this solution
is probably not entirely adequate. Other alternatives include aggregating
data, block bootstrapping if the number of states is large (Bertrand et al. 2004;
Kolstad and Kowalski 2012) and permutation tests for inference (Abadie et al.
2010; Buchmueller and Marko 2014). While there may be no best practice
across all scenarios involving different numbers of states and time points,
it seems clear that formal statistical inference becomes questionable as the
number of states becomes small (Bertrand et al. 2004; Cameron and Miller
2015). Therefore inference from a DD model based on 50 US states is more
reliable than one based on 10 Canadian provinces, although it will also
depend on the division of states between exposed and unexposed groups and
the number of time points.

Validity and Robustness. A common approach to assessing the DD model’s valid-
ity and robustness is the use of so-called “placebo” tests, in which the analyst
tests to see whether the DD model detects an “effect” when it logically should
not, or for an outcome that should logically be unrelated to the policy interven-
tion (Lipsitch et al. 2010). This requires contextual knowledge about when and
how the policy was implemented, and substantive knowledge about outcomes
that should not have been affected by the policy. For example, McKinnon and
colleagues performed a DD analysis for the effect of antismoking legislation in
Quebec on adverse birth outcomes, finding consistent effects on birthweight
and pre-maturity. As a sensitivity analysis, they repeated the model using an
arbitrarily chosen false date for the intervention, for which no intervention
effects were detected (McKinnon et al. 2015a). Likewise, Riddell et al. consid-
ered the effect of a hospital’s previous uterine rupture on subsequent rates of
vaginal delivery in women with a previous cesarean, revealing a transient dip
in the willingness of the doctors to allow women to continued attempted labor.
As a robustness check, the authors then considered the effect of the hospital’s
rupture history on diabetes diagnoses as a placebo condition that could not
plausibly have affected the exposure. Reassuringly, there was no effect of the
exposure on the placebo outcome (Riddell et al. 2014).

Policy exposures are naturally aggregate, applied to whole states,
provinces, or countries, and therefore concerns sometimes arise around
the potential for the ecological fallacy (Greenland 2001). This fallacy is to
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attribute individual-level causation to an association observed only at the
aggregate level. However, when the DD model estimates the effect of an
aggregate exposure on individual-level outcomes, it is precisely the question
of interest to understand the effects of policy changes. As is true more
generally, care should be taken so that inferences drawn are consistent with
the levels of observation in the analysis.

Extensions. A number of extensions to the basic DD model exist. In the
context of a continuous or multicategory instead of binary exposure, the DD
model can be modified accordingly (Duflo 2001; Angrist and Pischke 2009;
Dunkley-Hickin 2014). Effect measure modification can be investigated
by interacting the DD interaction term with a third variable, for example,
education or income (e.g., Harper ¢t al. 2014). Effect heterogeneity over time
or across states can be allowed by including indicator variables for each time
period (e.g., year) or each treated state.

When it is known based on the policy design that a subgroup within
treated state X time strata is ineligible or should be unaffected by the policy,
a triple-difference or DDD estimator may be used. For example, in Strumpf
(2011) the Medicaid program was implemented in different states in different
years, and women with children were eligible while women without children
were not. As stated previously, all three main effects and three two-way inter-
action terms must be included for the model to be well specified. Therefore,
in addition to controlling for fixed differences across states and shared
changes over time, group-specific time trends and group-specific differences
across states are also controlled for, significantly strengthening the case for
causal inference. The hope is that the remaining list of potential unobserved
confounders that vary by time, state, and subgroup diminishes accordingly.
DD models may also be used in concert with other methods to improve the
exchangeability of the exposed and unexposed groups, including propensity
scores and matching (Stuart et al. 2014) and synthetic controls (Abadie et al.
2010; Bauhoff 2014).

General Considerations for Both FE and DD

It may be the case that the number of individuals or states that change their
exposure, those that contribute to the estimate of the effects (y; in the FE
model and f; and f3 in the DD model), are relatively few in number or are
quite different from the general population of interest. If relatively few indi-
viduals change their educational attainment, for example, then the effective
sample size can be quite limited, leading to imprecise intervals and low power
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for tests against the null (Bell and Jones 2015). The small effective sample size
may also have implications for the generalizability of the estimate, so care must
be taken with interpretation on that front as well.

With longitudinal data the question of lags and dynamic effects are
important considerations that must be resolved statistically or substantively.
For example, in a fixed-effects case-control study of flooding in relation to
gastrointestinal emergencies, Wade et al. (2014) determined that there was
an acute effect, but by five days after the flood the exposure effect fell to the
null. In contrast, in a 2014 DD study on the relation between tobacco taxes
and overall mortality, the authors postulated that a change in tax policy could
not produce an acute effect on mortality. Rather, it would have to impact on
smoking behavior over several years to begin to change mortality patterns.
Therefore, these authors imposed a five-year lag after the policy change to
begin looking for the impact on mortality (Bowser et al. 2016).

Another consideration regarding logistic regression is the incidental
parameters problem, which epidemiologists know as the small sample bias
of the odds ratio (Greene 2004). The coefficient parameters of the logistic
regression model are not consistently estimated by unconditional maximum
likelihood when the size of each stratum is small, as it often is in fixed-effects
panel models that have only a few time periods per unit. Conditional logistic
regression is the standard tool in epidemiology to overcome this problem,
although this too can produce important small-sample bias in the presence of
many covariates or small numbers of units (Greenland et al. 2000). Researchers
may also consider linear probability models, which yield similar results to
logistics when outcomes are not rare (Long 1997).

Finally, like all regression models, the promise that fixed effects remove
confounding from all time-invariant factors is only valid when the form of
the model is correctly specified. Statistical inferences require the correct error
term distribution and variables are typically assumed to be measured without
error.

Applications

By way of illustration, we briefly describe two papers that have rigorously
implemented the FE and DD methods to answer causal questions in social
epidemiology.

Blakely and colleagues (2014) studied the causal relationship between
improving social circumstances, such as finding a job or moving into a good
neighborhood, on tobacco use. To avoid confounding and reverse causation,
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they used an FE design in which approximately 15000 individuals were
followed longitudinally and the within-person changes in social circumstances
were considered in relation to within-person changes in tobacco use. Only
about 2% of participants changed their smoking status between waves,
but exposure changes were somewhat more common: 10% of respondents
experienced a change in labor force status between waves, nearly a third had
a decrease or increase in log income of half a standard deviation or more, and
one in five changed neighborhood. The authors observed both important
increases in smoking with income gains in young participants, as well as
increased odds of smoking for those who relocated to neighborhoods with
poorer conditions. In a related paper using the same within-person design,
Ivory and colleagues (2015) adjusted for additional time-varying neighbor-
hood characteristics such as neighborhood smoking prevalence. They found
that a one decile increase in neighborhood deprivation between waves was
associated with an 8% increase in the odds of smoking. This neighborhood
effect was modest compared to the influence of the home environment. For
example, moving in with a smoker more than doubled the odds of smoking
compared to moving in with a non-smoker.

In another recently published example, McKinnon and colleagues
(2015b) considered the effects of a policy that removed user fees for
facility-based deliveries on the proportion of births occurring in facilities
within low-income countries. Moreover, the authors also considered whether
the removal of fees affected socioeconomic inequalities in facility-based births
(McKinnon et al. 2015c). Using Demographic and Health Survey data from
nine sub-Saharan African countries, three of which had eliminated user fees
during the study period, the authors applied DD models to control for secular
trends and time-invariant differences among countries, and they allowed for
differential effects of the policy by the socioeconomic position of the mother.
The analysis is premised on the assumption that changes in the proportion of
facility deliveries by socioeconomic position that are due to factors other than
the policy do not differ between the intervention and control countries. The
authors checked this assumption by ensuring that trends in the proportion
of facility-based deliveries by socioeconomic position were similar for the
intervention and control areas prior to introduction of the policy. They
reported weak evidence of differential effects of removing user fees across
wealth quartiles, but results suggested that educated women benefited more
from removing user fees compared to women with no education: a difference
of 8.6 facility deliveries per hundred live births (95% CI: 5.4, 11.9) among
women with secondary education versus a difference of 4.6 per hundred (95%
CI: 2.2, 7.0) for women with no education. Thus, the intervention appears to
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benefit all social groups while at the same time disproportionately benefiting
the most advantaged women, potentially exacerbating inequality between
educational strata.

Conclusion

All causal inference based on observational data rests on finding an adequate
substitute population for the unobservable counterfactual of interest. For
example, for the average effect of the treatment on the treated, we observe
the treated group under treatment, but we need a group to stand in for the
outcome that would have been observed in these same individuals if, counter
to fact, they had not been treated (Hernian and Robins 2006). When the
outcomes in the chosen substitute population differ systematically from what
would have been observed counterfactually in the treatment group, epidemi-
ologists refer to the bias in the estimated causal effect as “confounding.” The
epidemiologic tradition, following from a larger biomedical culture, has tra-
ditionally approached this problem using either randomization or statistical
adjustment for measured confounders. These tools have been less persuasive
for social epidemiology, however, because in most cases it is difficult to ran-
domize social exposures and to enumerate and successfully measure all of the
important confounders. This has led the field to consider other more convinc-
ing approaches to causal inference, two of which we reviewed in this chapter.

One approach is the fixed effects model, which uses changes in exposure
at the level of observation (i.e., individual, state). Each individual’s counterfac-
tual is its own outcome before the exposure change. This effectively matches
on all time-fixed characteristics that might generate confounding in other
designs. The second approach is the difference-in-differences model, in which
a control group is chosen and the model uses changes in exposure deter-
mined outside of the unit of observation. The appropriateness of the chosen
control group as a counterfactual for the treatment group is evaluated in the
pre-exposure period. Then the trend across time is compared in the exposed
and the unexposed groups, and any deviation from the same time trend in the
post-exposure period is attributed to the exposure.

Both of these methods have the potential to reveal causal effects if their
assumptions are satisfied, and so careful examination of these assumptions
is always necessary. In most cases it is possible to observe that an assumption is
violated, but impossible to prove that it is not. This motivates an approach
in which the sincere investigator tries diligently to find evidence of a falsified
assumption. If all attempts at falsification fail, then the causal story told by
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the investigator becomes increasingly persuasive. The demand for reliable and
valid evidence that informs how to design policies to reduce health inequalities
continues to mount. Multiple investigators using multiple methods that pro-
vide this kind of robust evidence of a consistent, causal relationship between
exposure and outcome will help inform policies that have more rational and
secure bases.

Key Readings and Resources

Here we provide just a few key references for interested readers. Meyer (1995)
provides a nice overview of quasi-experimental designs, which get a more
in-depth treatment in Shadish, Cook, and Campbell (2001) and are nicely
summarized and illustrated in a non-technical way by Gertler et al. (2011).
Angrist and Pischke (2009, Chapter 5 and 2015, Chapter 5) give excellent
applied overviews of fixed effects and difference-in-differences designs, and
Wooldridge (2013, Chapters 13 and 14) provides a more formal textbook
treatment. FE and DD models are easily implemented using any standard
regression software (e.g., SAS, Stata, R), but some example code is useful. For
applied researchers, Allison (2005) gives fixed effects models a full treatment
using SAS, and there are user-written Stata packages that attempt to make
estimating DD models easier (Allison 2009; Villa 2014; Linden 2015). The
supplemental appendix to Ryan et al. (2015) provides Stata code for estimat-
ing DD models and testing key assumptions, and the online supplement to
Harper et al. (2012) contains data and Stata code. For R users, Kim and Imai
(2014) have recently published a package that includes DD estimation.
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